skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mak, Cheuk Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere. Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms). 
    more » « less